Clustering Via Local Regression
نویسندگان
چکیده
This paper deals with the local learning approach for clustering, which is based on the idea that in a good clustering, the cluster label of each data point can be well predicted based on its neighbors and their cluster labels. We propose a novel local learning based clustering algorithm using kernel regression as the local label predictor. Although sum of absolute error is used instead of sum of squared error, we still obtain an algorithm that clusters the data by exploiting the eigen-structure of a sparse matrix. Experimental results on many data sets demonstrate the effectiveness and potential of the proposed method.
منابع مشابه
Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملClustering and Local Regression in Object Oriented Metrics
This paper gives a brief review of clustering and local regression techniques; we are mainly focused on its implementation to software engineering data and we present an example of the preliminary results using clustering and local regression. The clustering, and local regression are part of the data processing of a project called Analysis of Software Engineering Data Using Computational Intell...
متن کاملEvaluating Different Approaches to Permeability Prediction in a Carbonate Reservoir
Permeability can be directly measured using cores taken from the reservoir in the laboratory. Due to high cost associated with coring, cores are available in a limited number of wells in a field. Many empirical models, statistical methods, and intelligent techniques were suggested to predict permeability in un-cored wells from easy-to-obtain and frequent data such as wireline logs. The main obj...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملLocal spatial regression models : a comparative analysis on soil contamination
Spatial data analysis focuses on both attribute and locational information. Local analyses deal with differences across space whereas global analyses deal with similarities across space. This paper addresses an experimental comparative study to analyse the spatial data by some weighted local regression models. Five local regression models have been developed and their estimation capacities have...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008